Category Archives: Feeding and foraging

Wine-delivering wasps

By John Upton

Yeast is a salubrious if invisible vintner, and scientists have discovered an important role that wasps have played in its spread and evolution in vineyards around the world.

Species of the single-celled fungal genus Saccharomyces feast on grape sugar and break it down to create alcohol molecules.

(That’s not all, of course. By shearing carbon and oxygen atoms away from carbohydrates in decomposing barley, the yeast produces booze while shaking loose pockets of carbon dioxide that manifest as bubbles in a freshly cracked beer. When the yeast produces those bubbles inside dough, the result is bread’s delightfully airy texture. Other genera of yeast fashion hard liquor, chocolate, soy sauce and scores of life’s other routine gastronomic indulgences from otherwise questionably-edible ingredients.)

Most modern wine, beer and bread makers purchase Saccharomyces and pour the yeast directly into their concoctions. But wine, beer and bread emerged as staples long before anybody understood their microbiotic secrets — in various continents and countless cultures over at least the last 9,000 years. Many of these early vintners, brewers and bakers relied on nature to deposit the mystical ingredient into their potions.

Where did this yeast come from, if not from a packet? How could nature be so dependably relied upon to provide this ingredient, apparently from thin air?

Illustrated by Perry Shirley
Illustrated by Perry Shirley

The answer rests in fungi’s remarkable ability to flood the environment with its own microscopic spores and then to lay low, requiring little to no sustenance, until it settles on food that allows it to quickly flourish.

A team of French and Italian scientists reported in 2012 in Proceedings of the National Academy of Sciences that vineyard-visiting social wasps in Italy were found to be both vectors and natural reservoirs of S. cerevisiae. The group, which expects to publish follow-up research in the same journal shortly, concluded that the wasps served as a “key environmental niche for the evolution” of a yeast used for winemaking — a yeast that cannot spread through the air unaided.

The group found the yeast inside the guts and nests of wasps, suggesting that the insects inadvertently gather the yeast while foraging in vineyards for food. Hibernating queens provide the yeast with a warm and safe winter home, and then the progenies of the queens help deposit the fungus back onto grapes as the fruit comes into season.

“Our work suggests that wasps could move wine strains and maintain diversity, favoring crosses between strains involved in wine making and wild strains,” Duccio Cavalieri, a microbiology professor at the  University of Florence who was involved with the research.

(A version of this post originally appeared on Wonk on the Wildlife in 2012.)

Easter Bilby protects Australia’s outback

By John Upton

Some Australian kids don’t believe in the Easter Bunny.

The clutches of chocolate and colored eggs hidden in the yards and living rooms of environmentally-aware households Down Under are deposited, through orifice unknown, by the Easter Bilby.

Browse the easter sweets selection in just about any Australian store right now and you’ll find foil-wrapped chocolate icons of the adorable outback-dwelling marsupials.

Rabbits are ravenous, fast-breeding, and destructive pests in Australia, where they were introduced by hunters and graziers during the 19th Century. The bare rabbit-resembling bilby, on the other hand, is a native Australian species that’s vulnerable to extinction. Celebrating the Easter Bilby helps Australian kids learn about the ecological importance of native mammals — while avoiding the awkward passions for invasive counterparts that the Easter Bunny can imbue.

bilby
Illustrated by Perry Shirley.

The beauty of the bilby lies in its relationship with Australia’s fragile, old, and nutrient-poor land. It digs through arid and semi-arid soils, bioturbing them, improving water drainage and reducing flooding and erosion. The digging helps spread seeds. It creates microhabitats for bugs and fungi. It turns over soils and helps with nutrient cycling.

From the Mammal Review paper by P. A. Fleming et al.
Mammal Review

The effect of native Australian diggers, such as bilbies, echidnas, and wombats, is “increased plant vigour and resilience, increased biodiversity and consequently improved ecosystem functioning,” scientists wrote in a Mammal Review paper published last year.

But Australian ecosystems have been ravaged during the past two centuries by introduced species, including rabbits, pigs, and camels, and by land clearing. The native diggers are hunted by introduced cats and foxes. Those pressures have helped push half of the nation’s digging mammals toward extinction, the researchers concluded following an exhaustive review of scientific literature. “[T]he loss of digging mammals has contributed to the deterioration of ecosystems,” they wrote.

Rabbits dig as well — but they apparently do not dig deep enough to produce the same benefits as bilbies. Previous research has shown that digging bilbies foster 80 percent more seedlings than do digging rabbits.

“When bilbies, bandicoots, and bettongs dig for food, their diggings are deep, roughly-conical pits which penetrate deep into the soil layers,” Murdoch University wildlife biologist Trish Fleming, one of the coauthors of the Mammal Review paper, told Wonk on the Wildlife.

“Rabbits dig shallower pits, which disturb a large area of the top soil layers. This would expose the soil to drying out, which means it’s less suitable for soil microorganisms or for new seeds.”

Then there’s the wee issue of rabbit plagues. Looking out across an affected Australian farm, the land can appear as if it is moving.

“Rabbits feed on soft shoots of plants, and then will dig up any vegetation within reach, including the roots and bark off trees.  In plague numbers, they wipe out any living plant material.  There are expanses of productive lands which have never recovered from plagues of rabbits,” Fleming said.

So go and get stuffed with caramel, Easter Rabbit. Aussies don’t need your type sniffing about in their gardens.

Why fish need wood

By John Upton

Trees don’t just provide habitat for arboreal and terrestrial creatures — dead trees that have toppled over in shallow waters are critical for aquatic wildlife. Woody habitat in lake littoral zones provides shelter for fish. It also supports the growth of algae and the like, which are eaten by herbivorous fish and other critters.

As the globe warms and as aquifers are sucked dry, lake levels in many parts of the world are falling. And as a lake’s water level drops, semi-submerged trees that ring the lake’s shallows can be left high-and-dry. That can decimate fish populations — harming birds and other species that feed on them.

“Reduced lake levels generally decrease littoral habitat, which is critical to aquatic food webs,” wrote University of Wisconsin researchers in a recent paper published by the Canadian Journal of Fisheries and Aquatic Sciences. “Fishes across all trophic levels are known to rely heavily on littoral food sources, with littoral zones supporting 65% of the consumption by lentic fish communities and 57% of their body carbon.”

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

The scientists sampled fish from 2000 until 2005 and again from 2007 to 2009 in Wisconsin’s Little Rock Lake, which is in the Great Lakes region. Declining water levels in the Great Lakes, which is Earth’s largest body of fresh surface water, are a major worry for scientists.

During the monitoring period, drought led to a decline in water levels of a little more than a meter. That left three quarters of the lake’s woody habitat stranded on land. The following graphs from the paper show the close relationship between water levels and woody habitat:

lake-level

The sampling results painted a picture of an ecosystem in steep decline — a decline that the scientists linked to the loss of soggy wood.

Things got so bad during the drought that the scientists’ minnow traps started to come up empty.

“The rapid decline of the perch population was associated with the loss of available CWH [coarse woody habitat],” the paper states. “Perch first failed to appear in a trapping event in 2005, after only a 10% loss of CWH. No perch were detected in 2008 or 2009 after 58% and 72% of the available CWH had been stranded from the littoral zone.”

The loss of the perch was blamed on the declining water levels, with changed temperature and oxygen levels potentially contributing. A loss of food was also stated as a potential factor. As was the loss of spawning habitat and loss of shelter from predators due to the disappearance of woody habitat.

“Previous research has suggested the potential for predator–prey encounter rates to increase with reduced CWH, which would result in intense bass predation on perch. … [T]he severe depletion of the perch population might have been exacerbated by the relatively high densities of bass in Little Rock South, which initially increased with reduced lake level.”

Eventually, though, the largemouth bass were found to grow more slowly as the lake’s water level fell.

The study’s lead author, Jereme Gaeta, tells Wonk on the Wildlife that the findings have implications for a warming planet.

“Future climate projections are uncertain, but we generally expect evaporation to outpace precipitation in many regions such as northern Wisconsin,” Gaeta said. “Our research shows that loss of littoral habitat can change not only the way fishes interact but also change fish community and food web structure.”

To help protect aquatic communities from the loss of littoral woody habitat, the paper recommends manually placing dead trees in lakes — something scientists call tree drops.

“Potential preventative measures when lake levels drop are limited. Our best options are to protect and restore natural shorelines to ensure future inputs of woody structure are possible and, when water levels begin to drop, add trees to deeper waters or steeper shorelines,” Gaeta said.

Little Rock Lake
This photograph from the paper shows wood stranded above Little Rock Lake’s shoreline as water levels declined.

Global warming is changing how caterpillars eat

By John Upton

Animals can evolve to survive global warming by changing their behavior and by changing their bodies. Butterflies are particularly sensitive to climate change, and changes in their behavior have been well documented — most notably in their migration patterns and ranges. North American Butterfly Association president Jeffrey Glassberg recently told the Maryland Independent that climate change is affecting Rhopalocera on a vast scale. “There’s a whole suite of butterflies whose ranges are retreating,” he said. (Such changes are the subject of Flight Behavior, a novel by Barbara Kingsolver dealing with climate change.)

And now comes the first evidence that butterfly larvae are changing the internal workings of their bodies to help them cope with warming temperatures.

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

University of North Carolina scientists studied the optimal feeding temperatures of Colias spp. caterpillars from California’s Sacramento Valley and Colorado’s Montrose Valley. The frequency of very hot days and nights at both sample sites have increased since the 1970s, when a similar study with the same caterpillar populations was conducted. Caterpillars feed best within specific temperature ranges, and the researchers discovered that the caterpillars have evolved to feed at higher temperatures. The results of the study were published in the journal Functional Ecology:

This study is among the first to show population changes in physiological performance in response to recent climate change, although previous theoretical work has predicted such changes. While previous work has highlighted adaptation to seasonal timing, specifically photoperiodic cues, our work suggests that rapid adaptation to changing thermal regimes may also be an essential mechanism.

I asked lead researcher Jessica Higgins whether she thinks that butterflies are among the first organisms to adapt their physiologies to warming conditions — or whether she thinks this was just the first time that such changes have been detected by scientists.

“I do think that other organisms may be adapting, but we can’t detect it because of the lack of good historical data,” Higgins said. “What made my experiment so unique was that I had this snapshot of caterpillar physiology back in the 1970s. I was able to compare my results with what they previously found and then correlate it with temperature. I think my study highlights that there can be adaption to physiological traits — not just changes in seasonality, which has been the main focus of previous adaptation-to-climate studies. “

Bambi should have been shot and killed, science says

By John Upton

Is it better to kill an orphaned fawn, or is it better to leave it alive, left to try to survive alone in a menacing world?

That unpalatable question is not a hypothetical one in Scotland, where some 60,000 red deer are culled every year — part of an effort to keep populations down to protect crops and woodlands from the hungry grazers.

And Scottish policy is clear on what the answer should be after a hunter orphans a fawn: Kill the baby.

“Shoot both female and juvenile where-ever possible,” the guidelines state. “Where possible target calves first and maintain vigilance for orphaned calves. ”

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

Josephine Pemberton, a professor at the Institute of Evolutionary Biology, University of Edinburgh, wanted to know whether that policy was scientifically wise. Using funding from the U.K. National Environmental Research Council, Pemberton and five other scientists analyzed data from censuses of a red deer population on Scotland’s Isle of Rum dating back to the 1970s.

What they found was that depriving a deer of its mother’s care and protection before its second birthday triggered resounding impacts. Orphaned males and females were more likely to grow haggard and die young. Males were hit particularly hard — and male orphans had trouble growing antlers as they matured, reducing their chances of winning mates and reproducing. As for female fecundity? “Although we failed to find evidence that female orphans paid a reproductive cost,” the scientists wrote in their paper, which was published in August in the journal Behavioral Ecology and Sociobiology, “we cannot discount an effect on female physical condition.”

Pemberton said the results show that young deer should be killed if they are orphaned by a hunter — even if they are old enough to not seem helpless.

“If anything, our results suggest that if a young animal is still going around with its mother in its second year — and they often do — you should try and shoot it then, too,” Pemberton said.

But that’s easier said than done. And not just because shooting a fawn must surely be a heartrending task for even a hardened stalker.

“Although culling calves with their mothers is in the best practice guidance, stalking is a tough job done largely alone,” Pemberton said. “Stalkers are often under pressure to shoot a lot of hinds. Shooting the pair takes time and effort and we know they don’t always manage to do it.”

Human infections are dead ends for valley fever fungus

By John Upton

People infected with two closely-related species of fungi are dying in growing numbers in the American southwest. The Coccidioides spores are blown with dust into lungs, where they can trigger a painful and sometimes-deadly condition known as valley fever.

But any cocci that ends up in a human has hit a dead end. It will not reproduce to spawn a new generation.

That’s because of the lifecycle adopted by these varieties of cocci after evolving with the rodents that share their desert home. The coccis’ ancient ancestors lived and dined on plants. Then they evolved to feast instead on the rotting flesh of dead animals. Now they have evolved to live inside a living mammal, sometimes waiting for years for the host to die so they can pounce and quickly consume the fresh kill.

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

Mammals whose immune systems can’t control the fungus may die quickly. But as I explain in Vice’s Motherboard blog, most animals that are infected with cocci develop few symptoms — and those symptoms are normally short-lived:

Normally, [the Cocci] eek out lives as filaments called hyphae. The hyphae live in the soil and produce spores, a lucky few of which get sniffed into the lungs of desert rodents. The spores balloon in size inside the host, forming spherules. The mammal immune system kicks quickly into gear at this point, building walls around the spherules, containing them and developing immunity against further attacks.

It’s when the immune system fails to contain these spherules that the fungus can propagate throughout its victim, sometimes with deadly consequences. As an infected rodent dies, collapsing into the desert, the cocci burst out of suspended animation and unleash streamers of hyphae that eat the rotting meat. As the fungus feasts, hyphae and spores slip back into the soil, ready to start the cycle all over again.

Humans don’t slip into the desert sands when we die. We are embalmed or cremated, making any infection a waste of time for the fungus and, in some cases, a waste of life for humanity. “If a cocci spore gets into a human, it has made a big mistake,” John Taylor, a University of California at Berkeley mycologist, told me. “It’s unlikely to ever become adapted to living in humans.”

Black-backed woodpeckers would face extinction without wildfires

By John Upton

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

This summer has been a tinder-dry scorcher in the American West, where climate change is being blamed for a horror fire season. Mountain snow is melting earlier nowadays and summers are getting hotter — and that perilous partnership is fueling a steady surge in the frequency and size of the region’s wildfires.

The infernos kill firefighters, destroy homes and damage public infrastructure.

But it’s worth remembering that fires are healthy and regenerative phenomena in many ecosystems — including those in the West.

Blazes clear out water-hogging undergrowth and provide blank slates upon which timberlands can grow anew, boosting forest biodiversity. Rugged pods that encase the seeds of some specialized plants open after fire, sowing the genesis of the next generation in fertile fields wiped clean of competitors.

It’s not just plants that have evolved to rely on fire. Woodpeckers, for example, can flourish in its wake. The black-backed woodpecker has a particularly specialized diet that leaves it dependent upon the charred aftermath of wildfires. The species feasts on the wood-boring beetles that proliferate in burned trees following blazes in Western American mountain-ranges.

Rim Fire
The aftermath of the Rim Fire, the fourth-largest wildfire in Californian history, photographed near Yosemite National Park in early September by San Francisco journalist Chris Roberts.

But us humans are not as fond of fire as are the beetles or the woodpeckers that hunt them. Public policy dictates that fires should be avoided and, if that fails, confronted without compromise. The practice of preemptively thinning out forests to reduce fire impacts, and the logging of forests after they burn, have both taken heavy tolls on the black-backed woodpeckers.

Populations of these birds have been harmed so severely by public policies of wildfire suppression that the federal government is reviewing whether genetically distinct populations in two regions should be added to its list of endangered species.

“This is the first time in the history of the Endangered Species Act that the government has initiated steps to protect a wildlife species that depends upon stands of fire-killed trees,” Chad Hanson, an ecologist with Earth Island Institute, said when the U.S. Fish & Wildlife Service announced the review in June.

A clean-up following the Rim Fire, making it more difficult for black-backed woodpeckers to inhabit this area. Photo by Mike McMillan of the U.S. Forest Service.
A clean-up following the Rim Fire, making it more difficult for black-backed woodpeckers to inhabit this area. Photo by Mike McMillan of the U.S. Forest Service.

Hanson coauthored research published in May in The Open Forest Science Journal that showed just how severely one of those two populations of woodpeckers, which lives in the Sierra Nevada and southern Cascade ranges of California and Oregon, has been affected by humanity’s wont to battle fire. Hanson and his colleague, Dennis Odion, obtained data from the government and from their own observations which they used to model the effects of typical wildfire suppression policies in the Sierra on the species’ habitat.

“A scenario based on thinning 20 percent of mature forests over a 20-year period, and post-fire logging in 33 percent of potential habitat created by fire, reduced the amount of primary habitat after 27 years to 30 percent of the amount that would occur without these treatments,” the scientists wrote in the paper.

“Our results indicate that conserving the distinct population of black-backed woodpeckers in the southern Cascades and Sierra Nevada and the biodiversity for which they are an indicator will require that more unthinned area be burned by wildfires and protected after fire as critical habitat.”

The following table was lifted from the paper. It compares the amount of black-backed woodpecker habitat available within a study area following 27 years of simulated fire suppression policies:

woodpeckers and fire

And this photograph of an acorn placed in the trunk of a Rim Fire-charred pine is an endearing reminder that wildlife perseveres following fire. Wild Equity Institute founder Brent Plater tells me it might have been put there by a squirrel or a scrub jay — but that it was most likely the handiwork of an acorn woodpecker. “Caching acorns in tree cavities is what they do for a living,” he said.

Photo by Chris Roberts
Photo by Chris Roberts

These chicks puke at predators

By John Upton

When Eurasian rollers forage for insect prey for their young, they’re not just on a quest for nourishing fat and protein. They’re fossicking through an ecological armory for chemical weapons.

Some plants produce toxins to deter herbivores. Some insects that eat those plants use those plant toxins for their own defense. Eurasian roller chicks use the plant toxins from those insects to produce a pungent orange liquid — an unsavory concoction that scientists have concluded is used as a defense against predators.

A team of Spanish researchers found that Eurasian roller nestlings vomited when they picked them up, but not when they approached the young birds, talked to them or gently prodded them. “This fact suggests that the vomit might be produced in response to some kind of predators that actively grasp and move prey during the predation event such as snakes, rats and mustelids, which are common predators of hole-nesting species as rollers,” the scientists wrote in a paper published in the journal PLOS ONE.

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

The researchers collected the puke and smeared some of it on pieces of chicken, which they offered (with the smeared side hidden) to 25 dogs alongside a similar chunk of poultry smeared only with water. Some of the mutts strangely showed no appetite for chicken whatsoever. But 18 of the 20 dogs with a hankering for hen opted first for the untreated meat, indicating that the smell is off-putting for a predator. Most of those 18 dogs subsequently wolfed down the vomit-smeared chicken, but six of them left it entirely alone.

“One could wonder about the nestling advantage of this defence,” the scientists wrote. “Kin selection is a possible answer to that question because a predator that finds the first nestling of a brood of five to be distasteful may leave alive the others.”

From where do the chicks get the hydroxybenzoic and hydroxycinnamic acids, phenolic acids and psoralen needed to produce their unpalatable puke?

The scientists matched these compounds to toxins produced by plants to deter animals from feeding on them. Many insects have developed an immunity to such toxins, and some use the plants’ toxins to defend themselves. That’s the case for many of the grasshoppers upon which the rollers prey, and the scientists believe that the chicks are, in turn, purloining the poisons from the grasshoppers to defend themselves.

But that’s not all — the scientists think that the parent birds might also be hunting for more-poisonous insects, such as centipedes, that most other birds would never touch.

“Grasshoppers are the main prey that rollers hunt to feed their nestlings,” they wrote. “Furthermore, rollers feed their offspring with a large share of poisonous arthropods that are avoided by most of the other sympatric insectivorous birds. This suggests that rollers are resistant to these toxic substances and could have the ability to sequester chemicals from their protected prey to defend themselves.”

An adult Eurasian roller.
An adult Eurasian roller in Kazakhstan. Photo by Ken and Nyetta.

Dutch gulls eat their young on Sundays

By John Upton

The durations of days and years are calibrated by celestial turntables: The spinning of the Earth and its arcing around the sun. Humans and wildlife alike live out rituals according to daily and annual schedules.

But the seven-day week is a human construct. It’s an arbitrary chunk of time that cocoons timetables of work and rest, of television programming and soccer practice. Whenever you see wildlife falling into a weekly routine, you can be confident it’s the result of a human influence.

A weekly schedule plays out among European herring gulls and lesser black-backed gulls nesting in the dunes of the Dutch island of Texel. And it’s a macabre one.

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

A chick being reared in these dunes may dread Sunday more than a young atheist dreads their mandatory church outings. It’s on Sundays that adult gulls are most likely to cannibalize the young. Saturdays are also popular chick-eating days among the Texel gulls, though not to the same extent as is the case on Sundays.

Sometimes the gulls eat their own chicks — or their own eggs. But more often they steal the unattended young of other birds, in some instances to be shared with their own hungry broods.

That’s not the only weekly pattern that marine ornithologist Kees Camphuysen has discovered during his studies on the island. Chicks tend to grow in spurts during the week, then their growth slows down over the weekends.

The Royal Netherlands Institute for Sea Research scientist thinks he knows what’s going on. He contends that it’s the weekly patterns of the region’s beamtrawlers and shrimpers that are driving the hebdomadal trends.

“[A] very strong weekly pattern in fleet size occurred, with high numbers of boats at sea Monday through Thursday, a much reduced number (mostly homeward bound) on Friday, and near to nothing on Saturdays and Sundays,” he wrote in his Ph.D. thesis.

The Texel Dunes gulls feast on the by-caught scraps of the fishing fleet, trailing the boats to scavenge protein for themselves and for their growing chicks. But when this supply of human surplus dries up over the weekends, the chicks’ growth rates slow, and hunger can drive the birds to cannibalism.

“Only commercial fisheries have a periodicity that can explain the strong, cyclic synchronisation in chick growth,” Camphuysen wrote. “Chick cannibalism rates were a mirror image of the rhythmic cycle in growth increments.”

The following series of photographs was published in Camphuysen’s Ph.D. thesis, showing an attack on an unattended chick by a bird from a nearby nest. The attacking gull can be seen sharing the kill with its own chick. If you would prefer to not see an adorable lesser black-backed gull chick being pecked to death and gutted by its own kind, then stop scrolling now.

cannibal-gull-in-action

Mosquitoes hunt us by our smell, then zero in on our heat

By John Upton

The Zzzz–zzZZZzzz–zzZZ sound that a mosquito makes while you’re trying to sleep isn’t the random modulation of a directionless insect. It’s the sound of a predator carefully circling its prey, smelling body odors and reading body heat, planning its strike.

Blood-hungry mosquitoes are females, on the desperate hunt for protein with which they can manufacture eggs. They repeat their hunt several times, making them dangerous vectors of disease. Their eggs will be laid in standing water before the female buzzes the last buzz of a short life as an airborne adult. Between the egg and adult stage comes the larvae, commonly known as mosquito wrigglers.

To find their prey, the female mosquito hones in on our smell. As they close in on their prey, they scan our body heat to help direct their strike.

Illustrated by Perry Shirley.
Illustrated by Perry Shirley.

That’s the conclusion of Dutch researchers, who set up a small wind tunnel with 3D tracking equipment and conducted experiments with hungry week-old female specimens of Anopheles gambiae, an African mosquito that hunts human blood and can transmit malaria. For some of the tests, the researchers placed a used sock at one end of the wind tunnel to gauge how they responded to human smell. In others, they placed a heat element at the end, set to 34°c to mimic the temperature of a human. Other tests involved using neither the sock nor the heat; and others used both. The researchers studied how the mosquitoes zeroed in on a specific point at the end of the wind tunnel under the different conditions.

The result?

Check out the following figures. Each row shows three views of the same wind tunnel experiments. The blue circles show the location of the plume of smell blown through the wind tunnel from the sock. The green lines track the mosquitoes approaching the end of the wind tunnel through the smell plume; red lines track the other mosquitoes. The target is at the center of the end of the tunnel.

mozzietracks“With heat alone, flights were … short and direct,” the scientists wrote in their paper, published in the online journal PLoS ONE. “The presence of human odor, in contrast, caused prolonged and highly convoluted flight patterns. The combination of odor+heat resulted in longer flights with more landings on the source than to either cue alone.”

So next time a mosquito is keeping you awake at night, don’t think of it as an idiot that’s buzzing mindlessly around your head. It’s just getting a good read on its prey before launching its strike.

Illustrated by Perry Shirley
Illustrated by Perry Shirley